High pressure

High pressure

University of California, Berkeley, and Yale University scientists have recreated the tremendous pressures and high temperatures deep in the Earth to resolve a long-standing puzzle: why some seismic waves travel faster than others through the boundary between the solid mantle and fluid outer core. Below the earth’s crust stretches an approximately 1,800-mile-thick mantle composed mostly of a mineral called magnesium silicate perovskite (MgSiO3). Below this depth, the pressures are so high that perovskite is compressed into a phase known as post-perovskite, which comprises a layer 125 miles thick at the core-mantle boundary. Below that lies the earth’s iron-nickel core.

Understanding the physics of post-perovskite, and therefore the physics of the core-mantle boundary, has proven tough because of the difficulty of recreating the extreme pressure and temperature at such depths.

Advertisements